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An Efficient Method for Analysis of Arbitrary
Nonuniform Transmission Lines
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Abstract—The analytical solution of an ideal linear varied
nonuniform transmission line (LNTL) has been obtained and the
exact linear two-port ABCD matrix of LNTL has been given
correctly for the first time. By using cascaded LNTL sections
to approximate an arbitrary characteristic impedance profile, a
new technique has been presented in this paper for analyzing
an arbitrary nonuniform transmission line (NTL). The technique
is far better than the conventional technique in terms of the
computational accuracy and intensity since it uses a piecewise-
linear characteristic impedance profile in place of the stepped
profile used by the conventional technique. Several numerical
examples have been given to demonstrate the method.

I. INTRODUCTION

NONUNIFORM transmission lines (NTL’s) have been
widely used by microwave engineers in many applica-

tions, such as impedance matching [1], pulse shaping [2],
and analog signal processing [3]. NTL’s also exist in many
VLSI interconnection structures to provide smooth connec-
tions between high-density IC chips and their chip carriers
[4], [5]. All of these applications requires an efficient method
for analyzing NTL’s. Many techniques have been devel-
oped for analyzing NTL’s in both the frequency and time
domains over the past 50 years. The reflection coefficient
or the voltage/current along a NTL can be described by a
differential equation. Unfortunately, this differential equation
is a nonlinear Riccati-type equation and its general solution
does not exist analytically [1]. For several special types of
ideal NTL such as exponential NTL’s (ENTL) [1] and power-
law NTL’s (PNTL) [6], the corresponding nonlinear Riccati
equations can be solved analytically without approximation.
For the general case, approximations such as the assumption
that the nonlinear part of the Riccati equation is negligible
are normally needed to obtain the solutions [1], [7], [11],
[14]. Due to the lack of general analytical solutions, numerical
techniques are commonly used for analysing NTL’s [4], [5],
[9], [10]. Most of these techniques treat a NTL as a cascaded
combination of many small uniform transmission line (UTL)
sections [see Fig. 1(a)], [4], [5], [10]. The accuracy and the
computational intensity of these techniques increase sharply
as the number of small sections increase. The inefficiency of
these techniques is clear since the stepped-type of impedance
profile is a poor approximation to the real continuously varied
profile of a general NTL.
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Fig. 1. Approximate an arbitrary nonuniform transmission line by using (a)
a group of cascaded UTL sections and (b) a group of cascaded LNTL sections.

In this paper, the analytical solution of an ideal linear varied
NTL (LNTL) has been derived and theexact linear two-
port ABCD matrix of the ideal LNTL has been presented
correctly for the first time. Based on this ABCD matrix,
a new technique for analysing general NTL is proposed to
replace the conventional techniques [4], [5], [10]. The novelty
of the new technique is that it uses cascaded ideal LNTL
sections to approximate the impedance profile of an arbitrary
NTL [Fig. 1(b)]. Since the discontinuous impedance profile
in Fig. 1(a) is replaced by a smoother impedance profile in
Fig. 1(b), the new technique is far better than the conventional
approaches in terms of computational efficiency and accuracy.

II. A NALYTICAL SOLUTION FOR AN LNTL

Consider an ideal lossless transmission line (Fig. 2). Its
characteristic impedance and propagation coefficient are

(1a)

(1b)

where is the position along the line, is the slope constant,
is the length of the line, is angular frequency, and is

the velocity of the light. The differential equation (generalized
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Fig. 2. An LNTL section.

telegraph equation) describing this system can be written as

(2a)

(2b)

which is an analytically solvable equation [8], [12], [13].
Although the solvability of (2) is known [8], [12], [13], the
way to obtain the linear two-port parameters of an ideal LNTL
is not easy due to the complex algebraic operations with the
involvement of Bessel functions. Rustogi [13] has obtained the
ABCD parameters of this transmission line system by solving
(2). Unfortunately, the ABCD parameters given in [13] have
several obvious errors. The author of [13] also has not provided
details concerning the solution procedure. In the present work,
(2) has been solved again independently and the details have
been given in the Appendix. Using this result, the ABCD
matrix for the above ideal LNTL can be written as

(3a)

(3b)

(3c)

(3d)

where is the Bessel func-
tion of the first kind of order and is the Bessel function
of the second kind of order Other matrix parameters such as

and can also be obtained by using matrix conversion.
It is worth noting that (3) is theexact solution of the ideal
LNTL.

In the extreme case where the slope constant of the ideal
LNTL approaches zero corresponding toand approach-
ing infinite, the LNTL should be identical to a uniform
transmission line section. To prove that, one can use the
following asymptotic forms of the Bessel functions to replace
the Bessel functions in (3) (also see [12])

(4a)

Fig. 3. Comparison ofjS11j; jS12j for an ENTL and a LNTL with same
impedance ratio and length of the line (Zin = Zs = 25 
; Zout =

ZL = 275 
; andL = 0:1 m).

(4b)

(4c)

(4d)

In doing this, (3a)–(d) reduce to

(5a)

(5b)

(5c)

(5d)

which are identical to the ABCD parameters of a uniform
transmission line section, as we expected.

Fig. 3 shows reflection coefficients for an ideal LNTL
section and an ideal ENTL section, both having the same
length and output/input impedance ratio. Fig. 3 also clearly
demonstrates that the LNTL exhibits the high-pass behavior.
The LNTL also has a higher value of reflection coefficient,
but less ripple over the whole frequency band in comparison
to the ENTL.

III. PROPOSEDTECHNIQUE FOR

ANALYSIS OF ARBITRARY NTL’ S T

For an arbitrary NTL (such as a nonuniform stripline)
(Fig. 1), both its characteristic impedance and propagation
coefficient are position-dependent and can be expressed as

(6)

(7)

where and are arbitrary functions that have positive
values and are spatially continuous along the NTL. The
complex reflection coefficient of the NTL is determined
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by the differential equation [1]:

(8a)

(8b)

(8c)

Equation (8a) is a Riccati equation that is nonlinear through
the term It is also worth indicating that by using voltage

and current along the NTL in place of the in
(8) one can also obtain another set of equations (generalized
telegraph equations) which are similar to (2).

By introducing a new variable

(9)

(8) can be further simplified to

(10a)

(10b)

where From (10), it is clear that is uniquely
determined by the characteristic impedance profile
and the boundary conditions at ports 1 and 2. In (10), the
propagation constant is no longer position-dependent under
the new variable For an arbitrary the piecewise-
linear approximation can always be applied. Based on the
above analysis, the proposed technique is carried out by the
following procedure.

Step 1) Numerically evaluate by using (9).
Step 2) Select a set of points

(corresponding to a set of points in terms of
in the region

) so the NTL is broken to small sections.
The of the th small section can be
approximated by an LNTL

(11)

(12)

where
Step 3) Evaluate the ABCD matrix of the th section

by using in place of ,
and in (3).

Step 4) Evaluate the ABCD matrix by cascading
the for all small sections.

(13)

After is obtained, the or parame-
ters can be calculated by using matrix conversion.

For a transmission line with dispersion, the and
in (6) and (7) are also dependent on frequency

(14)

(15)

To analyze such a transmission line, the above procedure needs
to be repeatedly performed at every single frequency point
to get the broadband The above method can also
be extended to the lossy NTL, which will be the subject of
another paper [16].

IV. SIMULATION EXAMPLES

The first example is an ideal exponential NTL (ENTL),
which has an exact analytical solution (since this is only
a numerical example, no attention has been paid to how
one would physically fabricate this line). Fig. 4 shows the
simulation results for the and calculated in four
different ways: 1) from the exact solution; 2) using a ten-
LNTL approximation; 3) using a ten-uniform transmission
line section (UTL) approximation; and 4) using a 20-UTL
approximation. The broken point set
is chosen in a similar way for all these cases in order to satisfy

(16)

where For the th UTL, the line parameters are

(17)

(18)

where
Excellent agreement (up to 50 GHz or even higher) be-

tween the results from the analytical solution and the results
from a ten-LNTL approximation is obtained [Fig. 4(a) and
(b)]. In contrast with a 10-LNTL approximation, a 10-UTL
approximation can only produce acceptable agreement with
the analytical solution below about 3 GHz [Fig. 4(c) and
(d)]. By using a 20-UTL approximation, the region of good
agreement is only expanded to 6 GHz [Fig. 4(c) and (d], the
poor agreement above 6 GHz makes the presentation above
10 GHz meaningless).

The second example is a microstrip linear taper. The width
of the line is varied linearly from 0.1 to 5.1 mm, the dielectric
constant of the substrate is 10.1, and the height of the substrate
and the length of the line is 1.0 and 30 mm, respectively.
To simplify the problem, the line is considered to be both
lossless and dispersionless. The effective dielectric constant

characteristic impedance , and using the
formulas given in [15] are shown in Fig 5. Fig. 5 shows that
the impedance profile of a microstrip linear taper is not a linear
function at all. The simulation results are shown in Fig. 6.
Three different ways are used to approximate the microstrip
linear taper: 1) a ten-LNTL approximation; 2) a ten-UTL
approximation; and 3) a 20-UTL approximation. It is clear
from Fig. 6 that the agreement between a 20-UTL and a 10-
LNTL is better than the agreement between a 10-UTL and a
10-LNTL for both and Since the structure should
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(a) (b)

(c) (d)

Fig. 4. SimulatedjS11j; phase(S11); jS12j, and phase(S12) of an ideal ENTL(Zin = 25 
; Zout = 275 
; andL = 0:1 m, Zs = ZL = 50 
).
(a) Comparison ofjS11j and phase(S11) simulation results by using ENTL analytical solution and a 10-LNTL approximation. (b) Comparison ofjS12j
and phase(S12) simulation results by using ENTL analytical solution and a ten-LNTL approximation. (c) Comparison ofjS11j and phase(S11) simulation
results by using ENTL analytical solution, a 10-UTL approximation, and a 20-UTL approximation. (d) Comparison ofjS12j and phase(S12) simulation
results by using ENTL analytical solution, a 10-UTL approximation, and a 20-UTL approximation.

present a high-pass behavior according to theory, the ten-
LNTL is the best approximation. Finally, it is worth noting that
at least 70–250 small UTL sections are needed to approximate
a practical microstrip taper [10].

V. CONCLUSION

This paper presents an efficient technique for analyzing an
arbitrary NTL by piecewise-linearly approximating the char-
acteristic impedance profile of the line. The ABCD parameters
of the ideal LNTL section are obtained here without approx-
imation. By using these parameters, the whole NTL ABCD
parameters are evaluated by using matrix multiplication. The
new technique is better than the stepped approximation (which
has been widely accepted by microwave engineers) due to
the associated computational efficiency and accuracy. The
advantage of the technique is obvious since the piecewise-
linear approximation is intrinsically better than the stepped

approximation. The new technique can be easily implemented
in the CAD environment.

APPENDIX

Equation (2a) can be solved according to the following
procedure.

Step 1) By introducing a new variable (2a)
can be rewritten as

(A.1)

Step 2) Let and substitute it into (A.1);
then

(A.2)
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(a)

(b)

Fig. 5. Calculated microstrip parameters as the functions of the position. (a)
"e� (x) and Zc(x). (b) y(x):

Step 3) For and letting (A.2) is further
simplified to

(A.3)

which is a first-order Bessel equation and has a
general solution:

(A.4)

where and are the constants, which can be
determined by the boundary conditions, and
and are the Bessel functions of the first
kind of order and the second kind of order,
respectively.

Step 4) So, the final solution for is

(A.5)

Since the solution
for can also be obtained by using (A.5).

(a)

(b)

Fig. 6. SimulatedjS11j; phase(S11); jS12j, and phase(S12) of an mi-
crostrip taper. (a) Comparison ofjS11j and phase(S11) simulation results by
using a ten-LNTL approximation, a 10-UTL approximation, and a 20-UTL
approximation. (b) Comparison ofjS12j and phase(S12) simulation results
by using a 10-LNTL approximation, 10-UTL approximation, and a 20-UTL
approximation.

Step 5) The ABCD matrix for a piece of LNTL is obtained
by applying proper boundary conditions to
and The final results are given in (3).
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