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An Efficient Method for Analysis of Arbitrary
Nonuniform Transmission Lines

Ke Lu, Member, |IEEE

Abstract—The analytical solution of an ideal linear varied 7 (X)
nonuniform transmission line (LNTL) has been obtained and the C
exact linear two-port ABCD matrix of LNTL has been given
correctly for the first time. By using cascaded LNTL sections Port 1 Port 2
to approximate an arbitrary characteristic impedance profile, a
new technique has been presented in this paper for analyzing
an arbitrary nonuniform transmission line (NTL). The technique

is far better than the conventional technique in terms of the
computational accuracy and intensity since it uses a piecewise-
linear characteristic impedance profile in place of the stepped (a)

profile used by the conventional technique. Several numerical -
examples have been given to demonstrate the method.

N

I. INTRODUCTION

ONUNIFORM transmission lines (NTL's) have been

widely used by microwave engineers in many applica-
tions, such as impedance matching [1], pulse shaping [2],
and analog signal processing [3]. NTL's also exist in many
VLSI interconnection structures to provide smooth connec-
tions between high-density IC chips and their chip carriers (b)

[4], [5]. Al ,Of these,appllcatlons req_UIreS an efficient methogig. 1. Approximate an arbitrary nonuniform transmission line by using (a)
for analyzing NTL’'s. Many techniques have been devekgroup of cascaded UTL sections and (b) a group of cascaded LNTL sections.
oped for analyzing NTL's in both the frequency and time

domains over the past 50 years. The reflection coefficient _ . . . . .
or the voltage/current along a NTL can be described by aInth|s paper, the analyuca] solution of an |de§I linear varied
differential equation. Unfortunately, this differential equatioﬁ\lTL (LNTL) has_ be;anhde_gvetlj and thhexact: linear two- q
is a nonlinear Riccati-type equation and its general soluti®?"t A?CfD mﬁtrlep t.e ideal LNTL ?15_ een presen'Fe
does not exist analytically [1]. For several special types gprrectly or_t e first time. _Based on this ABCD matrix,
ideal NTL such as exponential NTL's (ENTL) [1] and power® €W technique for analysing general NTL is proposed to

law NTL’s (PNTL) [6], the corresponding nonlinear RiCcatireplace the conventional techniques [4], [5], [10]. The novelty

equations can be solved analytically without approximatiofil the New technique is that it uses cascaded ideal LNTL
pions to approximate the impedance profile of an arbitrary

For the general case, approximations such as the assumpﬁ%

that the nonlinear part of the Riccati equation is negligibIQTL_ [Fig. 1(_b)]' Since the discontinuou_s impedance pr_ofil_e
are normally needed to obtain the solutions [1], [7], [11 n Fig. 1(a) is replaced by a smoother impedance profile in

[14]. Due to the lack of general analytical solutions, numeric |ig. 1(b), the_ new technique is far better t_hf'in the conventional
techniques are commonly used for analysing NTL's [4], [5ﬁpproaches in terms of computational efficiency and accuracy.

[9], [10]. Most of these techniques treat a NTL as a cascaded
combination of many small uniform transmission line (UTL)
sections [see Fig. 1(a)], [4], [5], [10]. The accuracy and the . ] o . .
computational intensity of these techniques increase sharph-onsider an ideal lossless transmission line (Fig. 2). Its
as the number of small sections increase. The inefficiency Glaracteristic impedance and propagation coefficient are

these techniques is clear since the stepped-type of impedance

Port 2

Il. ANALYTICAL SOLUTION FOR AN LNTL

profile is a poor approximation to the real continuously varied Z(x) =Z(0)(1+ k- z), 0<z<L (1a)
profile of a general NTL. Bo="2 (1b)
C
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Fig. 2. An LNTL section.
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telegraph equation) describing this system can be written gg9- 3. Comparison ofSi1], |S12| for an ENTL and a LNTL with same
impedance ratio and length of the lin&f = Z, = 25 Q,Z,u =
d?V(z) k dv(zx)

+/32 V() =0 (2a) Z;, =275 Q,and L = 0.1 m).
dx? 1+ks dz 0" PAE)=

d*1(x) k dI(x) 2
L7 ik @ T I@=0 @) Yo(o) i/ sin (5= ) wodeo (D)
which is an analytically solvable equation [8], [12], [13]. 2 3
Although the solvability of (2) is known [8], [12], [13], the Ji(x) ~y [ — cos <w - I) r—+oo  (4C)

way to obtain the linear two-port parameters of an ideal LNTL

is not easy due to the complex algebraic operations with the Yi(z) ~ \/zsin <$ - _7r> z — 4o00.  (4d)
involvement of Bessel functions. Rustogi [13] has obtained the T 4

ABCD parameters of this transmission line system by soIvir]g doing this, (3a)~(d) reduce to

(2). Unfortunately, the ABCD parameters given in [13] have '

several obvious errors. The author of [13] also has not provided A = cos(foL) E—0 (5a)
details concerning the so!utipn procedure. In the presen_t work, B =jZ.(0)sin(BoL) E—0 (5b)
(2) has been solved again independently and the details have sin(oL)
been given in the Appendix. Using this result, the ABCD C:jzio k—0 (5¢)
matrix for the above ideal LNTL can be written as <(0)

5o D = cos(ffpL) k—0 (5d)

A= 5 [ (u)Yo(uz) = Jo(u2)Yi(ur)] (3a) _ o _
P which are identical to the ABCD parameters of a uniform
T Po

B =—5"27.(0)(14 kL)[J1(u2)Y1(u1) — J1(u1)Y1(up)]  transmission line section, as we expected.

2k 3b Fig. 3 shows reflection coefficients for an ideal LNTL
3 (3b) section and an ideal ENTL section, both having the same
IJ%[%(M)%(W) — Jo(u2)Yo(uy)] (3c) length and output/input impedance ratio. Fig. 3 also clearly
36( ) demonstrates that the LNTL exhibits the high-pass behavior.

D :_@(1 + EL)[Jo(u)Yi (u2) = Ji(u2)Yo(u1)]  (3d) The LNTI._ also has a higher value of reflectlo.n coeﬁ|C|§nt,
2k but less ripple over the whole frequency band in comparison

whereu; = fo/k,u2 = (1+kL)us, J,(x) is the Bessel func- to the ENTL.
tion of the first kind of order, andY,, () is the Bessel function

of the second kind of order. Other matrix parameters such as lIl. PROPOSEDTECHNIQUE FOR
S,Y, and Z can also be obtained by using matrix conversion. ANALYSIS OF ARBITRARY NTL's T
It is worth noting that (3) is theexact solution of the ideal

For an arbitrary NTL (such as a nonuniform stripline)

LNTL. Fig. 1), both its ch teristic i d d ti
In the extreme case where the slope constant of the idéa'lg' ), both its characteristic impedance and propagation

LNTL approaches zero correspondingitoandu, approach- coefficient are position-dependent and can be expressed as
ing infinite, the LNTL should be identical to a uniform Zo(x) = Z.(0) - f(=), 0<z<L (6)
transmission line section. To prove that, one can use the
following asymptotic forms of the Bessel functions to replace
the Bessel functions in (3) (also see [12])

flaw)==-glx) O0<a<L (7)

where f(z) andg(x) are arbitrary functions that have positive

Jo(z) ~ /ECOS (x_[) T — +00 (42) values and are spatia!ly continuous along the NT!_. The
T 4 complex reflection coefficierif(z) of the NTL is determined
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by the differential equation [1]: For a transmission line with dispersion, tfiéx) and g(x)
I () in (6) and (7) are also dependent on frequency
z q . — 2 . =
dr 2P D@+ (=) K@) =0 (8a) Zaw)=Z0) flr,w), O0Sz<L  (14)
W
ez, w)=—"-g(z,w), 0<z< L. 15
K(x)zzl( ),dZC;(w) (8b) Bz, w) == - glw,w) (15)
Az €x .. .
To analyze such a transmission line, the above procedure needs
V() — Z(x) - I(x) . i
Iz) = . (8c) to be repeatedly performed at every single frequency point
V@) + Ze(z) - 1(2) to get the broadbanfid™!]. The above method can also

Equation (8a) is a Riccati equation that is nonlinear througtf €xtended to the lossy NTL, which will be the subject of
the term'2(z). It is also worth indicating that by using voltage2nother paper [16].
V(z) and current/(z) along the NTL in place of th&'(z) in

(8) one can also obtain another set of equations (generalized IV. SIMULATION EXAMPLES
telegraph equations) which are similar to (2). The first example is an ideal exponential NTL (ENTL),
By introducing a new variable which has an exact analytical solution (since this is only
x a numerical example, no attention has been paid to how
y(z) I/ 9(z) dz 0<z<L (9)  one would physically fabricate this line). Fig. 4 shows the
0 simulation results for theS;; and Si» calculated in four
(8) can be further simplified to different ways: 1) from the exact solution; 2) using a ten-

ar LNTL approximation; 3) using a ten-uniform transmission
# —2-380-T(y) + (1 - rQ(y)) -K(y)=0 (10a) line se_ctioq (UTL) approximat_ion; and 4) using a 20-UTL
Y approximation. The broken point sétg, 1, -, z;, ", &)
K(y) = L dZ.(y) (10b) is chosen in a similar way for all these cases in order to satisfy

C Zey)  dy
. . ) ZC(xi-l—l) - ZC(xi) = ZC(xi) - ZC(xi—l) (16)
where By = w/c. From (10), it is clear thal'(y) is uniquely _
determined by the characteristic impedance profilg(y) Wherei=1,2,---n. For theith UTL, the line parameters are

and the boundary conditions at ports 1 and 2. In (10), the Tl — 7o
. . I ith _ Ze(%i) e(@i-1)
propagation constant is no longer position-dependent under Z." = 5 (17)
the new variabley. For an arbitraryZ.(y), the piecewise- L; = — iy (18)
linear approximation can always be applied. Based on the B
above analysis, the proposed technique is carried out by theere: = 1,2,---,n.
following procedure. Excellent agreement (up to 50 GHz or even higher) be-
Step 1) Numerically evaluatg(z) by using (9). tween the results from the analytical solution and the results

Step 2) Select a set of pointézro,zy,:--,z,--+,x,) from a ten-LNTL approximation is obtained [Fig. 4(a) and
(corresponding to a set of points in terms ofb)]. In contrast with a 10-LNTL approximation, a 10-UTL
y(x), (Yo, Y1, Y2, > ¥i» -+, Yn) N the region approximation can only produce acceptable agreement with
[0, L]) so the NTL is broken te» small sections. the analytical solution below about 3 GHz [Fig. 4(c) and
The Z.(y) of the ith small section can be (d)]. By using a 20-UTL approximation, the region of good

approximated by an LNTL agreement is only expanded to 6 GHz [Fig. 4(c) and (d], the
) poor agreement above 6 GHz makes the presentation above
Ze(y) = Ze(y) =Ze(yi) (L + ki(y — vi) 10 GHz meaningless).
v <y < Yig1 (11) The second example is a microstrip linear taper. The width
Ze(Wiv1) — Ze(u) of the line is varied linearly from 0.1 to 5.1 mm, the dielectric

ki =

Zo(wi) - (ir1 — 1) (12) ' constant of the substrate is 10.1, and the height of the substrate
and the length of the line is 1.0 and 30 mm, respectively.
wherei = 0,1,2,---,n — 1. To simplify the problem, the line is considered to be both
Step 3) Evaluate the ABCD matr[xi®!] of theith section lossless and dispersionless. The effective dielectric constant
by usingL; = y+1—w:, ki, Z.(y;) in place ofL, k, e.5(z) characteristic impedancg.(x), and y(x) using the

and Z.(0) in (3). formulas given in [15] are shown in Fig 5. Fig. 5 shows that
Step 4) Evaluate the ABCD matrikd™t!] by cascading the impedance profile of a microstrip linear taper is not a linear
the [A**4] for all small sections. function at all. The simulation results are shown in Fig. 6.
N Three different ways are used to approximate the microstrip
[ATotal] = H[Aith]' (13) linear 'Faper: 1) a ten-LNTL approximati_on; .2) a tgn-UTL
approximation; and 3) a 20-UTL approximation. It is clear

=1

from Fig. 6 that the agreement between a 20-UTL and a 10-
After [ATe*2]] is obtained, theS, Z, or Y parame- LNTL is better than the agreement between a 10-UTL and a
ters can be calculated by using matrix conversiorlO-LNTL for both S;; and Si2. Since the structure should
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Fig. 4. SimulatedSi1|, phase(S11),|S12|, and phas€Si2) of an ideal ENTL(Z;, = 25 Q, Zoue = 275 Q, andL = 0.1 m, Z, = Z;, = 50 Q).
(a) Comparison ofS;1| and phas€.S;,) simulation results by using ENTL analytical solution and a 10-LNTL approximation. (b) Comparispfy of
and phasé€.Si2) simulation results by using ENTL analytical solution and a ten-LNTL approximation. (c) Comparigéh dfand phasé.S;) simulation
results by using ENTL analytical solution, a 10-UTL approximation, and a 20-UTL approximation. (d) Comparién pand phas€Si2) simulation
results by using ENTL analytical solution, a 10-UTL approximation, and a 20-UTL approximation.

present a high-pass behavior according to theory, the tepproximation. The new technique can be easily implemented
LNTL is the best approximation. Finally, it is worth noting thain the CAD environment.

at least 70-250 small UTL sections are needed to approximate

a practical microstrip taper [10]. APPENDIX

Equation (2a) can be solved according to the following
procedure.
Step 1) By introducing a new variablke = 1 + kz, (2a)
can be rewritten as
EViy) 1 dViy) | B

V. CONCLUSION

This paper presents an efficient technique for analyzing an
arbitrary NTL by piecewise-linearly approximating the char-
acteristic impedance profile of the line. The ABCD parameters

Vg =0. (Al

of the ideal LNTL section are obtained here without approx- dy? y dy k2

imation. By using these parameters, the whole NTL ABCD step 2) LetV(y) = 4™ - U(y) and substitute it into (A.1);
parameters are evaluated by using matrix multiplication. The then

new technique is better than the stepped approximation (which 2U(y) dU(y)

has been widely accepted by microwave engineers) due to Yy J2 +(2n—1)-y" L. ~d

the associated computational efficiency and accuracy. The Y ) Y

advantage of the technique is obvious since the piecewise- + |ntn—1)—n+ 0} "2 U(y) =0. (A2)

linear approximation is intrinsically better than the stepped k?



LU: ANALYSIS OF ARBITRARY NTL'’s

Zo(X) Eefr (X)
150 10
120 | 8
90 L 6
60 | | 4
30 2
0 +—— SRR VR S SR S 0
0 5 10 15 20 25 30
x (mm)
(@)
y(x) (mm)
100
80
60
40
yzgeﬁ”(o)x
20
0 5 10 15 20 25 30
X (mm)
(b)

Fig. 5. Calculated microstrip parameters as the functions of the position. (a)

ceff(z) and Z.(x). (b) y(x).

Step 3) Fom = 1 and lettingz = (/% )y, (A.2) is further

simplified to
d2U(z) 1 dU(2) 1Y

13
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Fig. 6. Simulated|S;:|. phase(Si1),|S12|, and phas€.Si2) of an mi-
crostrip taper. (a) Comparison p§;| and phaséS;;) simulation results by
using a ten-LNTL approximation, a 10-UTL approximation, and a 20-UTL
approximation. (b) Comparison ¢512| and phas€.S,2) simulation results
by using a 10-LNTL approximation, 10-UTL approximation, and a 20-UTL
approximation.

which is a first-order Bessel equation and has a

general solution:

U(z) = K1 - Ji(2) + K2 - Y1(2) (A.4)

Step 5) The ABCD matrix for a piece of LNTL is obtained
by applying proper boundary conditions 16(x)
and(z). The final results are given in (3).

where K; and K, are the constants, which can be

determined by the boundary conditions, afhgz)
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